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The general properties of laminar, linearly elastic, locally isotropic bodies which are energetically optimum for a specified inclined 
incidence of a plane wave are investigated. It is shown that, in the case of special supplementary conditions of the type that the 
frequencies of the maximum attainable value of the energy characteristic should be present in the required spectrum or that the 
angle of incidence is sufficiently small, the problem reduces to an alternate configuration of no more than two of the given set 
of layers which are identical both in their physical properties and in their width. These properties were established earlier for 
the propagation of electromagnetic and purely longitudinal waves. © 2002 Elsevier Science Ltd. All rights reserved. 

The effective solution of the problem of investigating the limiting possibilities of multilayer structures 
in processes involving the control of the power of wave processes of a diverse physical nature assumes 
that it is possible to carry out an effective exhaustive search of all permissible versions of the 
constructions, the number of which is exceedingly large. However, within the framework of existing 
approaches, it is not possible either to estimate objectively to what extent the possibilities of the structures 
which are created differ from the maximum attainable possibilities or to construct structures efficiently 
which realize these limiting possibilities. We therefore formulated the problem of devising methods for 
a multilateral investigation of the limiting possibilities of composite structures, and we proposed a 
hypothesis concerning the existence of general relationships which are characteristic of structures that 
realize the limiting possibilities. 

The design of structures with unique properties involves investigating their limiting possibilities, which 
correspond to that limiting level which can be attained by controlling the structure of the system. In 
multi-extremum problems, to which wave problems of synthesis belong, the possibilities for predicting 
the behaviour of the objective function are limited. A local prediction is insufficient for constructing 
efficient procedures for searching for solutions. 

In cases of the inclined incidence of electromagnetic waves on a system of magnetodielectric layers 
as well as of the oblique incidence of acoustic waves on a system of layers in which shear waves do not 
propagate, qualitative rules for the structure of the optimum solution have been established. In particular, 
it was shown in [1]$ that the relation between the parameters in structures, which realize the limiting 
possibilities with respect to the attainment of a specified set of properties, possesses a definite inner 
symmetry, that enables one effectively to separate out the complete set of versions which realize the 
limiting possibilities in the case of such problems. In this case, the same type of symmetry is characteristic 
of the relation between the parameters in the optimum structures under the action of both 
electromagnetic and acoustic waves. 

The question arises as to whether the established type of symmetry in the relation between the 
parameters in the optimum structure is preserved on transferring to wave problems of synthesis which 
are described by more complex models, in particular, when the possibility arises of a transformation 
of different types of waves at the interfaces. This paper is concerned with this question. 

tPnkl. Mat. Mekh. Vol. 65, No. 6, pp. 1025-1032, 2001. 
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1. F O R M U L A T I O N  OF T H E  P R O B L E M  
OF O P T I M U M  S Y N T H E S I S  

Suppose it is required to construct a multilayer structure which will provide the limiting possibilities 
with respect to the attenuation of elastic waves in a specified frequency band [03rain, 03max]. We shall 
assume that the half-spaces bordering the system of layers are ideal fluids. 

The propagation of an elastic wave in a system of elastic layers is described by the system of dynamical 
equations of the theory of elasticity 

~2U s 
Ps ~ = gsAus + (~'s + 2~)g rad  div u s, s = 1 . . . . .  N (1.1) 

Here, us(x, y, z, t) is the vector of the displacements of the particles in the sth medium, Ps is the density 
of the sth layer, Xs, gs are the Lam6 parameters of the sth layer and N is the number of layers. 

The vector field of the displacements can be represented in the form of a superposition of two 
fields [2] 

u s = grad ~s + rot Ps (1.2) 

Here ¢~ and P~ are the scalar and vector potentials of the wave field. A plane wave of general form 
can be represented in the form of a superposition of plane harmonic waves 

= exp(iAox + iAoY - i03t)d03, s = 1 . . . . .  N (1.3) 
Ps(x, y, z, t) ~/2~ 2.. f f  (z, 03) 

A 0=k0sinO 0, ko=03/c  o 

Here k0 is the wave number of the incident wave, c o is the propagation velocity of the wave in the half- 
space from which the wave comes and O0 is the angle of incidence of the wave. 

The problem of the propagation of an elastic wave in a system of two elastic layers then reduces 
to solving the following boundary-value problem in the spectral densities of the scalar and vector 
potentials 

where 

2 ÷ b L (z, 03) + (k~(03)- A~(03))fj (z, 03) = 0 
Oz z 

~2fs-(Z' ~) ~-(y~(03)-A~(o~))L-(z, 03)=0 
o~z 2 

bs_l<~z<~bs; s = l  . . . . .  N 

Q ,  Ofs_l (bs_ l  ' ~: 03) 
+ b = + f s (  ~-I, 03) (dPs+Qs)fs-l(bs-t,  0 3 ) + . i ~  

Ao 3z 

Of?( +bs_=, (t)) n .. ~ b Q ) of+-I(bs-I' 03)+- iAo(1-Os-~s )Js - t (  s-i, 03) Oz = (':l:'s - s ~z 

s = 2  . . . .  ,N 

3f~(O,~z 03) = - i c ° s t S ° [  k°f~(O' 03)+~70c0]  ' f°-(0' 03)=0 

~f~v+l(l, to) 
~Z =ikN+ICOSON+If~¢+I(I, tO), f~+l(/, 03)=0 

(1.4) 

[1 2 
~s = s-IYs-I 2A20 ~ts-gs-I  

gsy2s , Qs = gsTs 2 ; s = 2  . . . . .  N 

Here ks = o3/Cs is the wave number of the longitudinal wave in the sth layer, c s is the propagation velocity 
of the longitudinal wave in the sth layer, Ys = o3/ds is the wave number of the shear wave in it and 
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bs (s = 1 . . . . .  N) are the coordinates of the interfaces of the layers with different physical properties. 
The conditions at the interfaces are a consequence of the rigid adhesion of the layers when the normal 
and tangential components of the displacements as well as the normal and shear stresses must be 
continuous at the interfaces. 

Suppose a discrete set of materials, which can participate in the design, is specified. The physical 
properties of each of these materials will be related by certain functional dependences. For instance, 
the propagation velocities of longitudinal and transverse waves in the material will be related to its 
density 9: c = c(p), d = d(p).  We now introduce the set of densities of the materials from the admissible 
set 

A : {Pm, n : p l  <p 2 <p3 <.. .  < p,, =Pmax} 

Over this set, the quantities c and d are function of the discrete argument P e A. 
It is therefore necessary to select the physical properties of the materials of the layers 9s (s = 1 . . . . .  

N), the thicknesses of the layers A s = bs - bs_l(s = 1 . . . . .  N) ,  the number of layers N and, also, the 
order in which they are arranged in order that the dependence of the energy transmission coefficient 
of the structure being designed should be closest to the required dependence T(o)). The problem reduces 
to minimizing the quality criterion 

COmax 
J =  ~ x(co)IT(co)-7"(co)]Zdco, T(CO)= C0P0cOSON+I IfN+l(l, CO)I 2 (1.5) 

Olmm CN+IPN+ 1 COS l~ 0 

for the solutions of system (1.4). Here, "c(o~)(0 ~< "~(o)) ~< 1) is a weighting function. 
Problem (1.4), (1.5) belongs to a number of optimal control problems of composite systems of the 

combinatorial type which have been studied previously [1]; the necessary optimality conditions for 
composite systems with such a structure have already been formulated. 

2. THE NECESSARY C O N D I T I O N S  OF O P T I M A L I T Y  

The necessary optimality conditions, which are an extension of Pontryagin's maximum principle to 
problems of the optimal control of composite systems [1], can be formulated for optimal control problem 
(1.4), (1.5). Here, the functions which, for optimal control problem (1.4), (1.5), can be represented in 
the form [1] 

('°max 8 

Rs(fs ÷. fs-, Ps, qs; P)lz = I Y a's(z, o))G~(o); p)da) (2.1) 
~mm t=J 

b,_l<~z<~b,,  s = l  . . . . .  N 

are an analogue of Hamilton's functions. (Note that, on the right-hand side of formula (2.1), all the 
arguments of the function Rs are determined at the point z.) 

The functions c( s = cds(z, ¢o)(i = 1 . . . . .  8) are expressed in terms of the solution 

+ , r  
fs (~, co), fZ(z, ,03), bs_ l < ~ z ~ b  s, s = l  . . . .  N 

of the initial system (1.4) and the solution 

ps(Z. (o), qs(z, co). bs_ z <~ z<~ bs, s = l  . . . . .  N 

of the system which is conjugate to (1.4) [1] 

I 2 Off~ + 3 - 4 = I m  
c L = Im , ct~ = I m - ~ z  Ps, as = Im fs , °~s qs  

5 Re fs qs, 6 afs + aqs 7 8 ReaPs a f s  o~ s = + a s = Re az ~)z ' °~s = Re Ps f s ,  ~s = az az (2.2) 

The functions G'~ = Gts(~o; p) have the form 
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i - 2 ~ , ( ( o )  

+4 A2o (o))(n, (p) - v(p) + 4 A~ (e))hs (p)) } 

G~=°m'(m){ 4{,(o3)( 1 -1)} ~,(m) b+ 
m s ( P )  

2 a%(~) } 
3 colT:(m) (1 _ 2{,(o3)) + ~ 1 + 2a~ (o.}) 

G; = [m,(p)  -2~,(co) 

Gs 4 = (i)(I -2~s){_by[(o3)+ 4A%(o3)hs(p)} 
l - { , ( o 3 )  

G~ = (°A° (e)) (l - 2F,,) {y~ (o3)[~ _ ] + 2v(p) - 2n, (p)] - 4A~ (re)h, (p)} 
l - { , ( t o )  

{ - 2 - 2 A ~ ( o 3 )  } G~ =o3Ao(o3) 2 Its PYs(('°) ! 
g(P) 72(e0)(1 - 2{,(o3)) 

{ - ' 2~(~)) } p(Ts(o3)- = o3Ao(o3)qs(o3) -2 It' ÷ +! 
~(p) y~(~)(l-g,(o3)) 

G8 = o 3 a o ( o 3 ) h , ( m )  

(2.3) 

Here 

~,(co) = y~(o3), 

~d2(p) 
m,(p)= d' 2 

rl, (0~) = ks2 (0~) - A20 (o3), hs(p) = ms(p) - ! - ns(p) + (2 - ms(p))v(p) 

_ d~  2 . ._d (p) ~= P_ 
",(P)- b 2(p-----~, vtp)- ¢2(p---~, p, 

It can be shown that the functions et', = ~(z ,  o3) satisfy the following differential equations 

c33°t's I-4ks2(o3) =0, i=1 ..... 4 
az 3 

4 t 2~Z s 
O oq ~.2(k~(~)+ys2(o3)_2A2o(o3)) +(k~(o3)-y~(o3))a'~ =0, i = 5  . . . .  8, 
Oz 4 

b s _ j ~ z < ~ b s ,  s = l  ..... N 

(2.4) 

Suppose N" is the optimal number of layers, p~(s = 1 . . . . .  N*) are the optimal physical parameters 
of the materials of the layers and b*~(s = 1, . . . ,  N* - 1) are the optimal coordinates of the interfaces of 
the layers. The following condition is then satisfied for the optimum solution 

(2.5) 
Rs(fs , f ~ ' ,  Ps, q,;  P,)l~=maxR~(f~ +*, f~-*, P,, q,; P)I~, p~A 

* * . . . ,  N*  bs_t <~z<~bs, s = l ,  

We will now investigate the possibility of the existence of qualitative features of the structure of the 
optimum solutions in problems of optimum synthesis of the form (1.4), (1.5). We will consider the most 
interesting case both in its theoretical aspects as well as in its applied aspects when the required 
dependence T(o3) is such that, for each value of the frequency o3 E [o3min, o3max], the value of T(o3) is 
the limiting attainable value. The required dependence T(o3) can therefore take only two values 
separately: either zero (total reflection) or unity (total transmission). 
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The following classes of optimum synthesis problems belong to the type under consideration, in which 
it is required to ensure: maximum attentuation of an elastic wave in the specified range of frequencies 
[tomin, tomax], minimum reflection of an elastic wave in the specified range of frequencies [tomin, tomax], 
and maximum attenuation of an elastic wave in some regions of the spectrum and the minimum reflection 
in other regions. 

3. I N C L I N E D  I N C I D E N C E  OF A H A R M O N I C  E L A S T I C  WAVE 

We will consider the inclined incidence of a harmonic elastic wave of frequency to on a system of elastic 
layers, where the permissible set consists of two materials. In the case being considered, p~ = Ps-2, 
cs = c~_2, d~ = d~_2, s = 3 . . . .  , N, that is, the materials of all the even and odd layers will have identical 
physical properties. When account is taken of the structure of an equation of the form (2.4) for the 
functions o~'~(z, to), bs_l <~ z <~ b~(s = 1 , . . . ,  N) ,  occurring in the functions R~(f+, f l ,  p~, q~; p) (2.1) and, 
also, the properties of the solutions of the initial system (1.4), it is possible to find the connection between 
the functions t~'s(z, to) for the layers with numbers s and s + 2 (they possess the same physical properties). 
Such a constructive analysis enables us to establish that the following equalities hold for the optimum 
solution 

+ *  - *  * * - *  * * 

Rs-~(f~ , f~ , P,, q,; o)lz=n,(L +', fs , ps, q,; P)lz (3.1) 

b* b* N* s-3 ~<z~< s-2, s=4 , . . . ,  -1 

Since, for the optimum solution, the functions Rs for the inner layers with the same physical properties 
have the same structure, the distance between the optimum coordinates of the interfaces of the layers 
are singular points for the functions Rs since, at these points, the maximum value of the functions Rs 
is simultaneously attained for the different elements of the set A. From inequality (3.1), we therefore 
immediately obtain 

A s = As_ 2, s = 4 ... . .  N* -1 (3.2) 

Hence, it has been established that the following assertion holds. 

Assertion 1. Suppose that, in the inclined incidence of a harmonic elastic wave on a system of elastic 
layers, the permissible set consists of just two materials. Then, in the optimum structure, the thickness 
of the inner layers with identical physical properties is the same. 

This property of inner symmetry in optimum structures enables us to reduce the dimensionality of 
the initial synthesis problem considerably and to reduce the multidimensional synthesis problem, the 
dimensionality of which is determined by the overall number of layers of the optimum structure, to a 
three-parameter problem. The three independently variable parameters are the thicknesses of the inner 
layers with different physical properties and the thickness of one of the boundary layers. Consequently, 
in the case under consideration, the complete set of parameters which realize the limiting possibiliues 
of composite structures can be effectively distinguished. 

4. I N C L I N E D  I N C I D E N C E  OF 
A N O N - M O N O C H R O M A T I C  E L A S T I C  WAVE 

We will now consider the general case of the inclined incidence of a non-monochromatic elastic 
wave on a system of elastic layers. We will consider the optimum synthesis problem (1.4), (1.5) 
with the following additional assumption: at a certain frequency o3 = to* ~ [tomin, tomax], the value of 
the energy transmission coefficient of the structure being designed T(to) must be the limiting possible 
value, that is, 

T(to*) = T£, (co*) (4.1) 

(the right-hand side of the equality is the limiting attainable value of the energy transmission coefficient 
at a frequency o3 = co*). 

Since the greater the width of the spectrum, the higher the approximation, the value of the energy 
transmission coefficient will be closest to the required value at a frequency co = to* for the case of 
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harmonic interaction with this frequency. The set of globally optimum solutions in the optimum synthesis 
problem (1.4), (1.5) with an additional condition of the form of (4.1) will therefore be a subset of the 
globally optimum solutions for the case of harmonic interaction with a frequency co = co*. 
Consequently, in the case being considered, the structure of the optimum solutions is qualitatively the 
same as for the case of harmonic interactions. 

For the more general case of the inclined incidence of elastic waves on a system of elastic layers, the 
relation between the parameters in the structures, which provide the limiting possibilities of the structure, 
therefore also possesses the same qualitative features and, in particular, the same type of inner symmetry 
as for the cases of electromagnetic and acoustic waves considered earlier [1]. 

5. I N C L I N E D  I N C I D E N C E  OF AN E L A S T I C  WAVE 
CLOSE TO N O R M A L  I N C I D E N C E  

We will now consider the question of the relation between the qualitative features of the structure of 
the optimum solutions for the cases of normal and close to normal incidence of an elastic wave. 

We expand the solutions of initial system (1.4) and the system conjugate to it in powers of a small 
parameter 00. The functions Rs (2.1) can then be represented as 

to~, l" I I ] 
Rs(fs, f~, Ps, qs; P)lz = S co) aco+o(og) ] 

tO . . . .  LPC ( P ~  (5.1) 

bs_l<~z<~bs, s = l  ... . .  N 

The functions ~](z, co) and 13if(z, co) are expressed in terms of the solutions of initial system (1.4) and 
the system conjugate to it. 

Hence, for cases of close-to-normal incidence of an elastic wave, the structure of the functions 
Rs (5.1) is analogous to the structure of the functions Rs for the case of normal incidence of elastic waves 
[1]. This means that, for these cases, the same qualitative features of the structure of the optimum 
solutions as in the normal incidence of a non-monochromatic elastic wave [1] can be established. 

A constructive analysis of the necessary conditions of optimality, carried out by analogy with the results 
obtained previously [1], enable us to establish the following. 

We introduce the function 

and use the notation 

p.(p) 1 sin 200 
q0(p, x)= P +xp, -oo<x<+oo;  ~t(P)=c2(p ) Co 2 

p+(x) = arg maxq0(p, x), p-(x) = arg minq)(p, x) 
pEA p~A 

(x* = argextr A(x), if A(x*) = extr A(x)) 
x x 

(p+(x) is a monotonically increasing function and p-(z) is a monotonically decreasing function of the 
argument z and, by virtue of the discreteness of the set A, both of these functions are piecewise-constant). 
Only materials with properties which belong to the domains of values of these functions can occur in 
the optimum elastic system. Analysis of the functions p+(z) and p-(x) therefore gives considerable 
information on the structure of the optimum construction. 

Assertion 2. In the case of close-to-normal incidence of an elastic wave on a system of elastic layers, 
the number of different materials constituting the optimum elastic system cannot exceedp + q, where 

+ 
p and q are the numbers of points of discontinuity of the functions p (~) and p-(T) respectively. 

In the elements of the set A, we introduce the function 

L(a, B)= ~(B)-~(a) a, ~ A  
~ _ ~  ' 

We shall consider the materials occurring in the set A to be arranged in order of increasing densities. 
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A s s e r t i o n  3. In the case of close-to-normal incidence of an elastic wave, the physical properties of the 
materials forming the optimum elastic system satisfT the following system of recurrence relations 

+ p j+ + + 
L(p jr-I , ) = min L(p jr-t , p), p~r-I <~ p ~ Pmax 

, +  . +  

r = 1 . . . . .  P; Jo = 1, Jp = m (5.2) 

L(p jT-I , p J; ) = max L ( p  jT-I , p), pJT-i < p ~ Pmax 

r = l  .. . . .  q; Jo =1, j q = m  (5.3) 

For close-to-normal incidence of an elastic wave, the phys!cal properties of the materials forming 
the optimum elastic system can only be elements of the set A = A ÷ w A-, where 

A-+ = {Pmm = pJO < pl~ < . . . <  pJ~ = Pmax } 

For close-to-normal incidence of an elastic wave, the system of recurrence relations (5.2), (5.3) 
enables us to carry out an effective, a priori reduction of the set of permissible versions A. Here, new 
possibilities are revealed for predicting the physical properties of materials, the inclusion of which in 
the initial set leads to a significant improvement in the functional characteristics of the structure being 
designed. 

A s s e r t i o n  4. In the case of close-to-normal incidence of an elastic wave, the physical parameters of the 
materials of neighbouring layers of the optimum elastic system are adjacent in the sequence 

...p J;, pJ;, ...pJ;, pJ;, pJ;-~, ...pJ;, p J;, pJ~+,... (5.4) 

This property establishes the nature of the junction of the materials of the layers with different physical 
properties for the optimum solution. Inhomogeneous structures, for which the order of alternation of 
the materials of the layers differs from (5.4), are not optimum. 

The established specific features of the structure of optimum elastic systems enables us to reduce 
considerably the number of permissible versions of multilayer constructions which are analysed for 
optimality. Knowledge of these features enables us to increase the efficiency of the different methods 
for searching for the optimum solution and to broaden the limits of applicability of the different 
approaches. 

6. T H E  C O N D I T I O N S  U N D E R  W H I C H  NO M O R E  T H A N  TW O  
M A T E R I A L S  CAN F O R M  T H E  O P T I M U M  E L A S T I C  S Y S T E M  

We will now consider the case of a harmonic elastic wave. 
It has been established in [3] that, if a laminar structure is composed of materials in which shear waves 

do not occur, then the optimum construction can consist of no more than two materials from the 
permissible set, regardless of the number of materials constituting the initial set. A constructive analysis 
of the necessary conditions of optimality, carried out by analogy with the case when shear waves do 
not occur in the layers [3], enables us to establish that, under certain conditions, this property can also 
hold in the more general case when shear waves can occur in the layers. 

A s s e r t i o n  5. At sufficiently small angles of incidence of a harmonic wave on a system of elastic layers, 
regardless of the number of materials constituting the initial set, the optimum laminar structure will 
consist of no more than two materials from the permissible set, the physical properties of which are 
adjacent in sequence (5.4). 

It is obvious that the property which has been formulated also holds in the case of non-monochromatic 
elastic waves but with the additional assumption, formulated in Section 4, that, at a certain frequency 
c0* ~ [tOm,n, C0m,×], the value of the energy transmission coefficient T(c0) of the structure being designed 
must be the limiting attainable value, that is, with the additional satisfaction of condition (4.1). 

Hence, for the cases considered above, the optimum synthesis problem which has been formulated 
can be completely solves, that is, the complete set of versions of laminar structures which realize the 
limiting possibilities can be distinguished. 
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We can conclude from the above analysis that the necessary conditions of optimality (2.5) contain 
substantial information on the structure of the optimum construction and, despite the complicated form 
of the Hamilton functions for problem (2.1)-(2.3) the qualitative structure of the optimum solution 
can be successfully revealed by a constructive analysis. 
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